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ABSTRACT 

 

Given a set of traverse measurements reduced to the ellipsoid, grid coordinates (  can be 

computed in two ways: (i) reduce the traverse measurements to the Universal Transverse 

Mercator (UTM) projection plane and then use plane trigonometry or (ii) compute geodetic 

coordinates (

),E N

),φ λ  directly using the direct and inverse cases on the ellipsoid and then 

transform these to grid coordinates.  The first method (traverse computation on the UTM 

plane) requires iteration and is slow; the second method (traverse computation on the 

ellipsoid) is simpler and quicker. 

 

The Intergovernmental Committee on Surveying and Mapping (ICSM) and Geoscience 

Australia have provided Microsoft® Excel spreadsheets for the calculations and several 

authors have presented information on the two methods using these software tools.  This 

paper briefly describes these methods with some technical and historical information 

regarding geodesic curves and the direct and inverse cases on the ellipsoid. 

 

 

INTRODUCTION 

 

In Australia, topographic mapping and coordination is based on rectangular coordinate grids 

(east E, north N) overlaying conformal projections of latitudes  and longitudes λ  of points 

related to geodetic datums.  There are 

φ
two geodetic datums of interest: the new Geocentric 

Datum of Australia (GDA) and the old Australian Geodetic Datum (AGD), one conformal 

map projection: the UTM, and two grids: the new Map Grid Australia (MGA) and the old 

Australian Map Grid (AMG).  Hence we have the coordinate "pairs" AGD/AMG and 

GDA/MGA.  There have been several "realizations" of geodetic datums in Australia – a 

realization being the actual determination of coordinates ( ),φ λ  related to a reference 
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ellipsoid, by the mathematical adjustment of measurements between stations in the national 

geodetic network.  The first of these was in 1966 and the second in 1984; both being 

realizations of the AGD and known as AGD66 and AGD84 with grid coordinates designated 

AMG66 and AMG84.  The AGD is a topocentric datum that has now been superseded by 

the GDA with a realization designated GDA94 with grid coordinates MGA94.  [In 1995 the 

Australian government proclaimed the new datum and produced a geodetic coordinate set 

designated GDA94 referred to the reference ellipsoid of the Geodetic Reference System 1980 

(GRS80) and located with respect to the International Terrestrial Reference Frame 1992 

(ITRF92) at the epoch 1994.0.] 

 

In Australia, coordinate transformations (  as well as calculation of grid 

convergence γ  and point scale factor k are defined by Redfearn's formula (Redfearn 1948).  

Calculations using these formula can be easily done using Microsoft

), ,E Nφ λ ⇔

® Excel spreadsheets 

available on-line via the Internet at the Geoscience Australia website 

(http://www.ga.gov.au/) following the links to Geodetic Calculations then Calculate Bearing 

Distance from Latitude Longitude.  At this web page the spreadsheet Redfearn.xls is available for use 

or downloading.  Alternatively, the ICSM has produced an on-line publication Geocentric 

Datum of Australia Technical Manual Version 2.2 (GDA Technical Manual, ICSM 2002) 

with a link to Redfearn.xls  

 

Computations on the reference ellipsoid are divided into two cases, (i) the direct case: given 

 of point 1 and the azimuth  and geodesic distance s to point 2, compute  of point 

2, and (ii) the inverse case: given  of points 1 and 2, compute the azimuth and geodesic 

distance between them.  The direct and inverse cases on the ellipsoid are equivalent to the 

familiar plane coordinate calculations "radiations" and "joins".  Excel spreadsheets for the 

direct and inverse cases on the ellipsoid are available at the Geoscience Australia website 

following the links to Geodetic Calculations then Calculate Bearing Distance from Latitude Longitude.  At 

this web page the spreadsheet Vincenty.xls is available for use or downloading.  Alternatively, 

the GDA Technical Manual has a link to Vincenty.xls  

,φ λ α ,φ λ
,φ λ

 

The GDA Technical Manual is a source of valuable information, references and computation 

formula, guidelines and Excel spreadsheets.  Also, two recent publications are very useful; 

one in the Trans Tasman Surveyor by Will Featherstone and Jean Rüeger (Featherstone & 

Rüger 2000) and the other in The Australian Surveyor by Will Featherstone and John Kirby 

(Featherstone & Kirby 2002).  These papers describe the reduction of traverse measurements 

to the ellipsoid and traverse computations on the ellipsoid and UTM plane.  [It should be 

noted, that in the latter of these two papers there is an error in the description of the process 

required for computation on the map plane.] 
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In addition to these publications, the present author has provided a document: Traverse 

Computation on the Ellipsoid and on the Universal Transverse Mercator projection (Deakin 

2005) for distribution at this conference; and will gladly receive comment on its usefulness (or 

otherwise) to the profession. 

 

Two of the aforementioned publications, Featherstone & Kirby 2002 and Deakin 2005, make 

it clear that traverse computation on the ellipsoid is a quicker and more direct method than 

traverse computation on the UTM plane.  Indeed both publications use the same traverse to 

demonstrate the methods; the latter has 16 pages devoted to a detailed computation on the 

UTM plane and only 3 pages for a computation on the ellipsoid and the former publication 

states that the time to compute on the plane was approximately 60 minutes versus 20 

minutes for the ellipsoid.  Remarkable savings in time and effort. 

 

The following two sections have a brief outline of the two methods of computation. 

 

TRAVERSE COMPUTATION ON THE UTM PLANE 
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Figure 1.  Traverse Smeaton(1)–Buninyong(2)–Flinders Peak(3) 
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Figure 1 shows a traverse Smeaton(1)–Buninyong(2)–Flinders Peak(3).  Smeaton and 

Buninyong are fixed stations (known coordinates) and Flinders Peak is a floating station 

(unknown coordinates).  It is required to calculate the grid coordinates of Flinders Peak.   

 

The coordinates shown in Figure 1 are MGA94 Zone 55 and the central meridian of the zone 

is to the east (right-hand side of the page).  The quasi-observations are the ellipsoidal angle 

at Buninyong(2):  and the geodesic distance Buninyong(2)–Flinders 

Peak(3): , and it is assumed that these are the result after all proper 

corrections have been applied to the actual field measurements.  The coordinates of Flinders 

Peak(3) are computed in the following steps: [detailed results are shown in Deakin (2005)] 

2 119 47 10.06ψ ′= ′′

′

′

′′

23 54972.161ms =

 

(1) Compute the plane bearing  of the back-sight Buninyong(2)–Smeaton(1). 21θ
This is a simple plane coordinate calculation using the known MGA94 coordinates. 

21 5 30 56.99θ ′ ′=  

 

(2) Compute the arc-to-chord correction  of the back-sight Buninyong(2)–Smeaton(1). 21δ
 The calculation of  requires the mean radius , a function of the mean latitude  

of the back-sight line.   can be calculated using Redfearn.xls to transform  

for both ends of the line, taking the mean and then computing  followed by 

. 

21δ mr mφ

mφ , ,E N φ λ⇒

mr

21 27.17δ ′′=
 

(3) Compute the grid bearing  of the back-sight Buninyong(2)–Smeaton(1). 21β
  21 21 21 5 30 29.82β θ δ ′ ′= − =

 

(4) Compute the grid bearing  of the forward-sight Buninyong(2)–Flinders Peak(3). 23β
   [Note that  is now known exactly] 23 21 2 125 17 39.88β β ψ ′= + = 23β

 

(5) Compute the E,N coordinates of Flinders Peak(3) 

 This step requires iteration. 

 (5.1) The E,N coordinates of Flinders Peak are computed using plane trigonometry 

and the plane bearing  and plane distance  are required.  They are 

unknown, but can be approximated by  and  where  is 

the point scale factor at Buninyong, a quantity that can be calculated by 

using Redfearn.xls to transform  for Buninyong (  is the 

grid convergence).  Using these approximations and plane trigonometry, 

approximate coordinates of Flinders Peak can be calculated. 

23θ 23L

23 23θ β 23 2 23L k s 2k

, ,  and ,E N kφ λ γ⇒ γ
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 (5.2) Use Redfearn.xls to transform  for Flinders Peak, then compute 

 and  for the line Buninyong(2)–Flinders Peak(3); then compute the 

arc-to-chord correction  and line scale factor .  These will be 

approximate values (since E,N of Flinders Peak and  of the line are 

approximations) but will give better estimates of  and 

. 

, ,E N φ λ⇒

mφ mr

23δ 23K

mr

23 23 23θ β δ= +

23 23 23L K s=

 (5.3) Compute "improved" coordinates of Flinders Peak using plane trigonometry 

and ,  from step (5.2). 23θ 23L

 

 Repeat steps (5.2) and (5.3) until there is no change in the coordinates of Flinders 

Peak. 

 

 

TRAVERSE COMPUTATION ON THE ELLIPSOID 
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Figure 2.  Traverse Smeaton(1)–Buninyong(2)–Flinders Peak(3) 
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Figure 2 shows the same traverse as before; Smeaton(1)–Buninyong(2)–Flinders Peak(3).  

Smeaton and Buninyong are fixed stations (known coordinates) and Flinders Peak is a 

floating station (unknown coordinates).  It is required to calculate the grid coordinates of 

Flinders Peak.   

 

As before, the E,N coordinates shown in Figure 2 are MGA94 Zone 55 and the central 

meridian of the zone is to the east (right-hand side of the page).  The quasi-observations are 

the ellipsoidal angle at Buninyong(2):  and the geodesic distance 

Buninyong(2)–Flinders Peak(3): , and it is assumed that these are the 

result after all proper corrections have been applied to the actual field measurements.  The 

coordinates of Flinders Peak are computed in the following steps: [detailed results are shown 

in Deakin (2005)] 

2 119 47 10.06ψ ′= ′′

′

′

′

23 54972.161ms =

 

(1) Transform  for Buninyong and Smeaton. , ,E N φ λ⇒

 Use Redfearn.xls 

 

(2) Compute the azimuth  of the back-sight Buninyong–Smeaton. 21α
 Use Vincenty.xls (Inverse Case):  21 7 23 13.037α ′ ′=

 

(3) Compute the azimuth  of the forward-sight Buninyong–Flinders Peak. 23α
  23 21 2 127 10 23.097α α ψ ′ ′= + =

 

(4) Compute  for Flinders Peak. ,φ λ
  Use Vincenty.xls (Direct Case) with  and  23 127 10 23.097α ′ ′= 23 54972.161ms =

 

(5) Transform  for Flinders Peak. , ,E Nφ λ ⇒

 Use Redfearn.xls 

 

This is a much simpler method than computing on the UTM plane. 

 

The simplicity of this method is due in no small part to the availability of Excel solutions of 

the direct and inverse cases on the ellipsoid.  These two cases are fundamental geodetic 

operations and may be thought of as ellipsoidal equivalents of the plane coordinate 

operations radiations and joins.  The direct and inverse cases are based on the properties of a 

geodesic on an ellipsoid and the following section contains an outline of the fundamental 

properties of this particular curve.  Parts of this section have been taken from a publication, 

 6 



currently in press, by this author and Dr Max Hunter of the School of Mathematical and 

Geospatial Sciences, RMIT University. 

 

 

THE GEODESIC ON THE ELLIPSOID 

 

The geodesic is a unique curve on the surface of an ellipsoid defining the shortest distance 

between two points.  A geodesic will cut meridians of an ellipsoid at angles , known as 

azimuths and measured clockwise from north 0° to 360°.  Figure 3 shows a geodesic curve C 

between two points A (  and B (  on an ellipsoid.  The geodesic curve C, of 

length s, from A to B has a forward azimuth  measured at A and a reverse azimuth  

measured at B. 

α
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Figure 3.  Geodesic curve C on an ellipsoid 

 

It is interesting to note that the geodesic on a plane is a straight line and on a sphere, the 

geodesic is a great circle.  On these two simple surfaces, plane and spherical trigonometry 

respectively are used to compute direction and distance.  The ellipsoid is a slightly more 

complicated surface (a surface of revolution created by rotating an ellipse about its minor 

axis) and the geodesic is a curve having curvature in two directions and having a 

characteristic equation 

  (1) sin cos sinw α ν φ α= C=
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where  is the radius of curvature of the ellipsoid in the prime vertical plane and 

 is the radius of the parallel of latitude.  Equation (1) is known as Clairaut's 

equation in honour of the French mathematical physicist Alexis-Claude Clairaut (1713-1765).  

In a paper in 1733 titled Détermination géométrique de la perpendiculaire à la méridienne, 

tracée par M. Cassini, avec plusieurs methods d’en tirer la grandeur et la figure de la terre 

(Geometric determination of the perpendicular to the meridian, traced by Mr. Cassini, … on 

the figure of the Earth.) Clairaut made an elegant study of the geodesics of quadrics of 

rotation (DSB 1971). 

ν
cosw ν= φ

φ

 

The characteristic equation of a geodesic shows that the geodesic on the ellipsoid has the 

intrinsic property that at any point, the product of the radius w of the parallel of latitude 

and the sine of the azimuth of the geodesic at that point is a constant.  This means that as 

 decreases in higher latitudes, in both the northern and southern hemispheres, 

 increases until it reaches a maximum or minimum of , noting that the azimuth of a 

geodesic at a point will vary between 0° and 180° if the point is moving along a geodesic in 

an easterly direction or between 180° and 360° if the point is moving along a geodesic in a 

westerly direction.  At the point when , which is known as the vertex, w is a 

minimum and the latitude φ  will be a maximum value , known as the geodetic latitude of 

the vertex.  Thus, the geodesic oscillates over the surface of the ellipsoid between two 

parallels of latitude having a maximum in the northern and southern hemispheres and 

crossing the equator at nodes; but due to the eccentricity of the ellipsoid the geodesic will not 

repeat after a complete revolution. 

cosw ν=
sinα 1±

sin 1α = ±

0φ
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Figure 4a Figure 4b Figure 4c 

 

Figures 4a, 4b and 4c show a single revolution of a geodesic on the Earth.  The geodesic 

reaches maximum latitudes of approximately ±45º and has an azimuth of approximately 45º 

as it crosses the equator at longitude 0º. 
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Figure 5 shows a schematic representation of the oscillation of a geodesic on an ellipsoid.  P 

is a point on a geodesic that crosses the equator at A, heading in a north-easterly direction 

reaching a maximum northerly latitude  at the vertex  (north), then descends in a 

south-easterly direction crossing the equator at B, reaching a maximum southerly latitude 

 at  (south), then ascends in a north-easterly direction crossing the equator again at 

A'.  This is one complete revolution of the geodesic, but  does not equal  due to the 

eccentricity of the ellipsoid, hence we say that the geodesic curve does not repeat after a 

complete revolution. 
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Figure 5.  Schematic representation of the oscillation of a geodesic on an ellipsoid 

 

It is interesting to note that the geodesic passing through P at latitude 9° 35' 24" North and 

having an azimuth at P of 43° 12' 36" on the GRS80 ellipsoid will wrap around the ellipsoid 

reaching vertices at  and will have a longitude difference at the 

nodes A and A  of .  This equates to a difference of 

90676.885 metres along the equator. 

0 47 37 42.820248φ ′= ± ′′

′′′ ' 0 48 52.431555A Aλ λ λ ′∆ = − =

 

 

THE DIRECT AND INVERSE PROBLEMS ON THE ELLIPSOID: A Limited History 

 

The direct problem on an ellipsoid is: given latitude and longitude of A and the azimuth  

and geodesic distance , compute the latitude and longitude of B and the reverse azimuth 

.  The inverse problem is: given the latitudes and longitudes of A and B, compute the 

forward and reverse azimuths ,  and the geodesic distance . 

ABα

ABs

BAα

ABα BAα ABs

 

The direct and inverse problems of the geodesic on an ellipsoid are fundamental geodetic 

operations that have been studied in detail by geodesists and surveyors since the early 1800's.  
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The nature of an ellipsoid and of the geodesic upon it, does not allow direct mathematical 

solutions to the problems; instead, they are solved by series expansions of integrals that are 

the solutions of differential equations.  The first of these was due to Friedrich Wilhelm 

Bessel, the German astronomer, mathematician and surveyor who published a method of 

solution in Astronomische Nachrichten (Astronomical Notes, Vol. 4, p.241) in 1823.  Bessel's 

method, using differential relationships between geodesic elements and the corresponding 

elements on an auxiliary spherical triangle, is not limited by distance provided a suitable 

number of terms are included.  Similar methods were published in the late 1800's by the 

Clarke (1880) and Helmert (1880); Krakiwisky and Thompson (1974) have a detailed 

development of Bessel's method.  In 1934, G.T. McCaw published an improved method of 

solving the direct case (McCaw 1934) and H.F. Rainsford (1955) published a detailed 

treatment of long geodesics on the ellipsoid, using McCaw's solution for the direct case and 

revising previously published methods for the inverse case.  Rainsford notes in his paper that 

the methods of solution involve a tedious process, particularly with 10-place logarithms. 

 

Prior to the advent of computers, practical solutions were devised for certain lengths of 

geodesic lines, and as a rule: the shorter the line, the easier the formulae (and workload).  

But, using short-line formulae on a long-line problem often proved disastrous, since 

approximations appropriate for a short line on an ellipsoid are rarely appropriate for a long 

line and there was no "one solution fits all".  In the latter part of the 20th century with the 

burgeoning availability of powerful desktop computers, solutions for the direct and inverse 

cases using series formula based on the solution of differential equations became practicable.  

One of these, a solution developed by the American geodesist Thaddeus Vincenty (Vincenty 

1975) and based on Rainsford's work, has been designed for ease of programming and may be 

used for lines ranging from a few cm to nearly 20,000 km with mm precision.  The ICSM has 

programmed Vincenty's method to run on Microsoft Excel spreadsheets and has made 

available a workbook, Vincenty.xls, containing spreadsheets for the direct and inverse cases 

(ICSM 2002).  These spreadsheets are easy to use, and combined with  

transformations using Redfearn.xls, geodetic traverse computations are now relatively routine 

operations. 

, ,E Nφ λ ⇔
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